an s_N (anrorc) mechanism in the amino-demethoxylation of 4,6-dimethoxypyrimidines 1

C.A.H.Rasmussen and H.C.van der Plas*

Laboratory of Organic Chemistry, Agricultural University, Wageningen, The Netherlands

During a recent investigation of the cine-amination of 4-substituted 5-bromopyrimidines by potassium amide in liquid ammonia² it was observed that 5-bromo-4,6-dimethoxypyrimidine $(\underline{1a})^3$ undergoes an amino-demethoxylation to 4-amino-5-bromo-6-methoxypyrimidine $(\underline{2a})^2$ on treatment with this reagent at -33° for 24 hours. We observed a similar replacement with 4,6-dimethoxy-

pyrimidine $(\underline{1b})^4$, yielding 4-amino-6-methoxypyrimidine $(\underline{2b})^4$. The amino compounds $\underline{2a}$ and $\underline{2b}$ could be diazotized into the corresponding 4-chloropyrimidines $\underline{3a}^3$ and $\underline{3b}^5$ by the action of sodium nitrite in concentrated hydrochloric acid. All products were identified by comparison with authentic samples obtained as cited.

In view of observations that the amino-dehalogenation of 4-halogenopyrimidines by potassium amide in liquid ammonia frequently occurs via a mechanism involving an open-chain intermediate 1,6,7 - the S_N(ANRORC) mechanism - we studied both replacement reactions with 15 N-labelled potassium amide in liquid ammonia. The 4-aminopyrimidines $2a^{\pm 8}$ and $2b^{\pm}$ and the corresponding 4-chloro-pyrimidines $3a^{\pm 8}$ and $3b^{\pm}$ were examined for their 15 N content by mass spectrometry, comparing the intensities of the M+1 and M peaks. The results are collected in the Table.

Excess of ${}^{15}N$ in the pyrimidines $\underline{2a}^{\star}$, $\underline{2b}^{\star}$, $\underline{3a}^{\star}$ and $\underline{3b}^{\star9}$ and the percentage of $S_N(ANRORC)$ mechanism in the amino-demethoxylation of $\underline{1a}$ and $\underline{1b}$

Excess of ¹⁵ N				% S _N (ANRORC)
<u>2a</u> *:	3.9	<u>3a</u> *:	3.9	100
<u>2b</u> *:	3.4	<u>3b</u> *:	3.5	100

The complete retention of the excess of ${}^{15}N$ in the 4-chloro derivatives $\underline{3a}^{\bigstar}$ and $3b^{\bigstar}$ implies that the ${}^{15}N$ label is present in the pyrimidine ring and that the amino-demethoxylation of <u>1a</u> and <u>1b</u> has <u>completely</u> taken place via an open-chain intermediate. These results constitute the first example of an S_N(ANRORC) process occurring on replacement of a methoxy function by an amino group. The following pathway is proposed for the reaction.

Scheme 2

An addition of a nucleophile to C(2) of 4,6-diethoxypyrimidine has been proposed earlier in the hydrazinolysis of 4,6-diethoxypyrimidine, yielding 3-methyl-1,2,4-triazole¹⁰.

References

- Part LXXIII on Pyrimidines and Part XXIII on the S_N(ANRORC) mechanism from this laboratory Previous paper in <u>both</u> series: C.A.H.Rasmussen and H.C.van der Plas, Rec.Trav.Chim.Pays-Bas, submitted.
- 2. C.A.H.Rasmussen, H.C.van der Plas, P.Grotenhuis and A.Koudijs, J.Het.Chem., in the press.
- 3. M.D.Metha, D.Miller and E.F.Mooney, J.Chem.Soc. 1965, 6695.
- 4. D.J.Brown and J.S.Harper, J.Chem.Soc. 1961, 1298.
- 5. D.Isbeque, R.Promel, R.C.Quinaux and R.H.Martin, Helv.Chim.Acta 42, 1317 (1959).
- 6. J.de Valk and H.C.van der Plas, Rec. Trav. Chim. Pays-Bas 90, 1239 (1971).
- 7. J. de Valk and H.C.van der Plas, Rec.Trav.Chim.Pays-Bas 91, 1414 (1972).
- 8. * denotes ¹⁵N-labelled compound.
- 9. All experiments were carried out in duplicate; accuracy + 0.2%.
- 10. H.C.van der Plas and H.Jongejan, Rec.Trav.Chim.Pays-Bas <u>89</u>, 680 (1970).

(Received in UK 18 July 1978; accepted for publication 7 August 1978)